The Kinetics and Mechanism of the Electrophilic Substitution of Heteroaromatic Compounds. Part XXXI. ${ }^{1}$ The Standardisation of Acid Catalysed Hydrogen Exchange Rates

By Ali El-Anani, John Banger, Giorgio Bianchi, Sergio Clementi, C. David Johnson,* and Alan R. Katritzky," School of Chemical Sciences, University of East Anglia, Norwich NOR 88C

Abstract

It is suggested that $k_{0}\left(100^{\circ}\right)$ at $\mathrm{pH}=0$ should be used for correlations of hydrogen exchange rates. A procedure for obtaining these k_{0} values is given involving successive determination of (A) k (stoich) T°; (B) k (stoich) T° at $\mathrm{pH}=0$; (C) k (stoich) (100°) at $\mathrm{pH}=0$; (D) correction for minority species reaction: and (E) correction for isotope effects. This procedure is applied to available data.

A MAJOR aim of the kinetic determination of reaction rates is their quantitative comparison and correlation with predictions from theories of reactivity. Acid catalysed hydrogen exchange is a suitable reaction for such work as it is undergone by a very wide range of heteroaromatic compounds of differing reactivity. Many previous papers in this series, and from other laboratories, have recorded kinetic rates for reactions of this class; the present paper attempts to define the most satisfactory method for obtaining comparable rate constants

[^0] J.C.S. Perkin II, 1972, 1953.
for such data (we hope later to report a similar procedure for nitration studies).

We have previously ${ }^{2}$ given reasons for choosing to compare rate constants measured at pH 0 and 100° : measuring at pH 0 is the best available means of converting pseudo first-order rate constants into secondorder rate constants, and 100° is chosen to minimise temperature extrapolation as most rates have been measured in the range $20-180^{\circ}$.

The procedure for the determination of $k_{0}\left(100^{\circ}\right)$ at
${ }^{2}$ P. Bellingham, C. D. Johnson, and A. R. Katritzky, J. Chem. Soc. (B), 1968, 866.
$\mathrm{pH}=0$ is a complex one and requires the following steps: (A) determination of k (stoich) $\left(T^{\circ}\right)$, involving knowledge of the acidity function at T°, of the effect of dissolved substrate on the acidity function, and of the effect of using $\mathrm{D}_{2} \mathrm{SO}_{4}$ instead of $\mathrm{H}_{2} \mathrm{SO}_{4}$; (B) determination of k (stoich) (T°) at $\mathrm{pH}=0$, involving construction of the rate profile and extrapolation to $\mathrm{pH}=0$; (C) determination of k (stoich) $\left(100^{\circ}\right)$ at $\mathrm{pH}=0$, involving assumptions about or measurement of rate variation with temperature; (D) determination of $k_{0}\left(100^{\circ}\right)$ at $\mathrm{pH}=0$, involving correction for minority species, assumptions being required regarding protonation behaviour of substrate $\mathrm{p} K$ with temperature; and (E) correction for isotope effects when comparing exchange rates involving different hydrogen isotopes.

Each of these steps will be discussed in detail, and then the results of the application of this procedure to available results will be presented and discussed.

PROCEDURE

A. Determination of k (stoich) at a Particular Acidity and Temperature.-(a) Standardisation of acid. This is achieved by the titration of 1 g of acid against N -sodium hydroxide, using screened Methyl Orange indicator. If $y \mathrm{ml}$ is required, $\mathrm{wt} \%$ acid $=5.004 y$ for $\mathrm{D}_{2} \mathrm{SO}_{4}$ and $4.904 y$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$. Subsequent acid solutions are made up directly by weight.
(b) Acidity correction to allow for protonation of the substrate. If $y \mathrm{~g}$ of a substrate S of equivalent weight E are taken in $z \mathrm{~g}$ of acid of $w \mathrm{wt} \%$, then the new $\mathrm{wt} \%$ of acid is given by $(E v z-5004 y) /(E z-50.04 y)$ for $\mathrm{D}_{2} \mathrm{SO}_{4}$ or $(E w z-4904 y) /(E z-49.04 y)$ for $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(c) Determination of H_{0} for solutions of $\mathrm{D}_{2} \mathrm{SO}_{4}$ at 25°. Wyatt ${ }^{3}$ has listed values for D_{0} for $\mathrm{wt}^{\circ} \mathrm{D}_{2} \mathrm{SO}_{4}$ at 25° and has shown that at equal molarities of $\mathrm{D}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ experimental values of D_{0} are not significantly different from those for H_{0} (determined by ref. 4) at least up to 90% $\mathrm{D}_{2} \mathrm{SO}_{4}$. Hence the graph provided by Wyatt ${ }^{3}$ of D_{0} vs. $\mathrm{wt} \% \mathrm{D}_{2} \mathrm{SO}_{4}$ may be used to obtain values of H_{0}.
(d) Temperature correction of H_{0}. From published data, ${ }^{4}$ the variation of the acidity for a particular wt $\% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is given by equation (1). The appropriate value of K is found from a graph (constructed from ref. 4) of its variation with $H_{0}\left(25^{\circ}\right)$.

$$
\begin{equation*}
H_{0}\left(T^{\circ}\right)=H_{0}\left(25^{\circ}\right)+K(298 \cdot 15-T) / 298 \cdot 15 T \tag{1}
\end{equation*}
$$

(e) Correction for salt effects. Previously we have corrected for the salt effect of dissolved substrate in deuterium exchange reactions by adding $0.35 H_{0}$ units to the calculated H_{0} value. ${ }^{5}$ This procedure was based on the average effect of dissolved substrates on the acidity as measured by Hammett indicators ${ }^{5}$ and was recognised as approximate. We are now investigating in detail the effect of substrate and inert solute concentration on rates: however, until detailed results are available we prefer to make no corrections for this factor.
B. Determination of k (stoich) $\left(T^{\circ}\right)$ at $\mathrm{pH}=0$.-The
\dagger A sign is wrongly reported in the cited reference.
${ }^{3}$ J. Sierra, M. Ojeda, and P. A. H. Wyatt, J. Chem. Soc. (B), 1970, 1570.
${ }^{4}$ C. D. Johnson, A. R. Katritzky, and S. A. Shapiro, J. Amer. Chem. Soc., 1969, 91, 6654.
determination of a rate constant at $\mathrm{pH}=0$ for a reaction which has been investigated only at higher acidities requires the construction and extrapolation of a rate profile. The majority of acid catalysed hydrogen exchange reactions appear to give straight line plots against H_{0}; extrapolation is then straightforward, and where alternative data are available is carried out independently on each set of data. Of the rate profiles against H_{0} considered in this paper, those which are curved were approximated to straight lines: the errors thereby involved are not large.
C. Determination of k (stoich) $\left(100^{\circ}\right)$ at $\mathrm{pH}=0$. (a) Determination of activation parameters at a given acidity. Because of the variation of acidity with temperature, activation parameters determined using solutions of the same $\mathrm{wt} \%$ sulphuric acid at different temperatures give only 'apparent values'. To find true activation parameters referring to a definite H_{0} value, the most satisfactory procedure is to construct two or more rate profiles at different temperatures, and then to use interpolated rates which refer to the same H_{0} value.

To find activation parameters from literature data where only one (or no) complete rate profile has been determined, together with the rates at different temperatures for a single wt\% sulphuric acid, the following procedure is adopted: (i) the corrected H_{0} values are calculated for the individual rates at the various temperatures but constant wt\% sulphuric acid; (ii) an average H_{0}, e.g. x, is selected from those just determined; (iii) assuming that the rate profile slope does not change with temperature, the rates at the H_{0} values of x at the various temperatures are calculated; (iv) the activation parameters at H_{0} of x are calculated using these rates.
(b) Temperature extrapolation at $\mathrm{pH}=0$. The value of E_{a} or ΔH^{\ddagger} at $\mathrm{pH}=0$ is required. We have chosen to use ΔH^{\ddagger} in this work in preference to E_{a}; the justification is that the $\Delta H^{\ddagger}-\Delta S^{\ddagger}$ treatment has a sounder theoretical basis than the treatment in terms of E_{a} and $A .{ }^{6}$

Table 1 summarises the ' uncorrected' and 'corrected ' activation parameters for the available compounds for which two rate profiles are available (published work or in Appendix). The uncorrected parameters refer to rate determinations using solutions of the same \% sulphuric acid at different temperatures, and the H_{0} quoted is the H_{0} at 25° for this concentration of sulphuric acid. The corrected parameters refer to measurements using at the different temperatures solutions of the same $\left(H_{0}\right)_{T}$ value. In all cases rates at integral and half-integral H_{0} values were obtained from least square plots of the available data at the particular temperature. ΔH^{\ddagger} and ΔS^{\ddagger} were obtained from these rates using equation (2), the appropriate thermodynamic formulation of reaction rates. ${ }^{7}$

$$
\begin{equation*}
\log k / T=10 \cdot 319+\Delta S^{\ddagger} / 4 \cdot 574-\Delta H^{\ddagger} / 4 \cdot 574 T \tag{2}
\end{equation*}
$$

Since $\log k$ depends on H_{0} by a quantity given by the slope of the rate profiles, it follows that ΔH^{\ddagger} will be acidity invariant only if the same slope is found at different temperatures. Generally such variations of ΔH^{\ddagger} with acidity are related to the difference between the slopes, which are

[^1]Table 1
Activation parameters for rate profiles uncorrected and corrected for variation of acidity with temperature

${ }^{a}$ See text. ${ }^{b}$ Present work; for details see Appendix. ${ }^{\text {c A. R. Katritzky and B. J. Ridgewell, J. Chem. Soc., 1963, 3753. d G. P. }}$ Bean, C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, and A. M. White, J. Chem. Soc. (B), 1967, 1219. e A. El-Anani, P. E. Jones, and A. R. Katritzky, J. Chem. Soc. (B), 1971, 2363. ${ }^{f}$ G. P. Bean, P. J. Brignell, C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, H. O. Tarhan, and A. M. White, J. Chem. Soc. (B), 1967, 1222. ${ }^{\circ}$ P. Bellingham, C. D. Johnson, and A. R. Katritzky, J. Chem. Soc. (B), 1967, 1226. ${ }^{n}$ U. Bressel, A. R. Katritzky, and J. R. Lea, J. Chem. Soc. (B), 1971, 4. í U. Bressel, A. R. Katritzky, and J. R. Lea, J. Chem. Soc. (B), 1971, 11.
unpredictable because of the unknown behaviour of the activity coefficient of the transition states: in fact we found them to be random. Nevertheless it is clear from Table 1 that the major variations occur in $\Delta S \ddagger$. The ΔH^{\ddagger} values, both uncorrected and corrected, are relatively constant. For the fifteen compounds measured, the average uncorrected ΔH^{\ddagger} is $30 \pm 6 \mathrm{kcal} \mathrm{mol}^{-1}$ (mean and standard deviation) and the average corrected ΔH^{\ddagger} is $31 \pm 7 \mathrm{kcal} \mathrm{mol}^{-1}$. Furthermore it is possible to extrapolate all the ΔH^{\ddagger} values to $\mathrm{pH}=0$ obtaining uncorrected ΔH^{\ddagger} $30 \pm 9 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, corrected $\Delta H^{\ddagger} 29 \pm 9 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Henceforth we take as a corrected ΔH^{\ddagger} at $\mathrm{pH}=0$ the standard value of $30 \mathrm{kcal} \mathrm{mol}^{-1}$ for all compounds.
(a) Base with pKa>0

(b) Base with pKa<0

Figure 1 Correlation for minority species reaction
D. Determination of $k_{0}\left(100^{\circ}\right)$ at $\mathrm{pH}=0$.-(a) Correction for minority species. For reactions which proceed on a majority species, k (stoich) $=k_{0}$, but for reactions which proceed on a minority species (e.g., on a free base below the $\mathrm{p} K_{\mathrm{a}}$ value) a correction must be made [equation (3)].*

$$
\begin{equation*}
k_{\mathbf{0}}=k(\text { stoich }) \cdot[\text { stoich }] /[\mathrm{min}] \tag{3}
\end{equation*}
$$

As is evident from Figure $1, k_{0}>k$ (stoich) for a base with $\mathrm{p} K_{\mathrm{a}}>0$, but $k_{0}<k$ (stoich) for bases with $\mathrm{p} K_{\mathrm{a}}<0$. As all bases in the pH region show Hammett behaviour, the

* Added in proof. The assumption of a constant E_{a} (or ΔH^{\ddagger}) has recently been criticised (B. N. McMaster, M. C. A. Opie, and G. J. Wright, Tetrahedron Letters, 1972, 2191). However, their work illustrates that a variation of $10 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ in our estimate of $30 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ for ΔH^{\ddagger} would lead only to a variation of ca. 0.4 in $\log f$ for a temperature extrapolation of $40^{\circ} \mathrm{C}$.
\dagger See footnote on p. 1066.
correction in the first case is $+\mathrm{p} K \log$ units to k (stoich). In the second case, the algebraic correction is $+m \mathrm{pK} \log$ units ($\mathrm{p} K$ is now negative) where m is the slope of $\log \left\{\left[\mathrm{BH}^{+}\right] /[\mathrm{B}]\right\} /-H_{0}$ and depends on the acidity function followed: 1.0 for $H_{0}, c a .0 .65$ for $H_{\mathrm{A}}, c a .1 .9$ for H_{R}, etc.
(b) Correction of $\mathrm{p} K_{\mathrm{a}}$ for deuteriated solvent. Bases are stronger in deuteriated media than in the analogous protic acid media. For primary amine protonation in the pH range $\Delta \mathrm{p} K$ is $c a .0 .55$ unit: for weaker bases $c a .0 .35$ unit. ${ }^{8}$ We have taken a standard value of $0 \cdot 4$ unit for $\Delta \mathrm{p} K_{\mathrm{a}}$.
(c) Temperature correction of $\mathrm{p} K_{\mathrm{a}}$. The $\mathrm{p} K_{\mathrm{a}}$ values to be used above should be corrected to 100°. For the protonation of primary aromatic amines, equations (4) and (5) have been shown to apply, ${ }^{9,10}$ with $x=(T-298 \cdot 15) / 298 \cdot 15$. Combining these equations we find equation (6).

$$
\begin{align*}
& R \ln K_{\mathrm{a}}=\frac{-\Delta G^{\circ}{ }_{25}}{298.15}+\frac{\Delta H_{25}}{298.15} \cdot\left(\frac{x}{1+x}\right) \tag{4}\\
& \mathrm{p} K_{\mathrm{a}}\left(25^{\circ}\right)=0.88 \Delta H_{25}-1.97 \tag{5}\\
& \mathrm{p} K_{\mathrm{a}}\left(100^{\circ}\right)=0.83 \mathrm{p} K_{\mathrm{a}}\left(25^{\circ}\right)-0.33 \tag{6}
\end{align*}
$$

Equation (6) is applicable only to primary aromatic amines, whereas equation (4) should apply to all Hammett

Table 2
Extrapolation procedure applied to 2 -amino-5-chloropyridine
(1) Free base
A. (b) Corrected acidity $\mathbf{1 9 . 0 2 \%}$

Wt. substrate $y=0.0876 \mathrm{~g}$; wt. acid $z=0.5620 \mathrm{~g}$; $\mathrm{wt} . \%$ of acid $w=\mathbf{2 4 . 0 1}$
(c) $H_{0}\left(25^{\circ}\right)-1.09$ from data of ref. 3.
(d) H_{0} (158°) -0.79 using equation (1) with $K=290$.
B. $\log k$ (stoich) at pH 0 is -5.88 by least squares extrapolation of corrected rate profile.
C. (a) Two rate profiles available. For ΔH^{\ddagger} values at different H_{0} values see Table 1 .
(b) Using $\Delta H^{\ddagger}=30 \mathrm{kcal} \mathrm{mol}^{-1}$ gives k (stoich) (100°) at pH 0 as -8.25 .
D. (a) $\mathrm{p} K_{\mathrm{a}}\left(25^{\circ}\right)=4.71$.
(b) Corrected for deuteriated solvent: $\mathrm{p} K_{\mathrm{a}}\left(25^{\circ}\right)=\mathbf{5} \cdot 11$.
(c) $\mathrm{p} K_{\mathrm{a}}\left(100^{\circ}\right)=4.38$ using equation (8).
(d) Hence $k_{0}\left(100^{\circ}\right)$ at pH 0 is -3.87 .
(2) Conjugate acid
A. (b) Corrected acidity $\mathbf{7 5} \cdot \mathbf{4 3} \%$.

Wt. substrate $y=0.0821 \mathrm{~g}$; wt. acid $z=0.9037 \mathrm{~g}$; wt. $\%$ of acid $w=76 \cdot 3$.
(c) $H_{0}\left(25^{\circ}\right)-6.99$ from data of ref. 3.
(d) $H_{0}\left(179^{\circ}\right)-4 \cdot 77$ using $K=1940$.
B. $\log k$ (stoich) at pH 0 is $\mathbf{- 6 . 3 9}$ by least square extrapolation of the corrected rate profile.
C. (a) Two rate profiles available. For $\Delta H^{\text {t }}$ values at different H_{0} values see Table 1.
(b) Using ΔH^{\ddagger} as $30 \mathrm{kcal} \mathrm{mol}^{-1}$ gives k (stoich) (100°) at pH 0 as -9.46 .
D. No correction for majority species. Hence $k_{0}\left(100^{\circ}\right)$ at pH 0 is $-9 \cdot 46$.
bases. Recently, we have found that the analogous relations to (5) for protonation at the pyridine nitrogen
${ }^{8}$ E. Högfeldt and J. Bigeleisen, J. Amer. Chem. Soc., 1960, 82, 15.
${ }^{9}$ P. D. Bolton and F. M. Hall, Austral. J. Chem., 1967, 20, 1797; 1968, 21, 939.
${ }_{10}$ P. D. Bolton, C. D. Johnson, A. R. Katritzky, and S. A. Shapiro. J. Amer. Chem. Soc., 1970, 92, 1567.

Table 3 (Continued)

Substituent	Ref.	$T /{ }^{\circ} \mathrm{C}$	Posi- tion(s)	Species charge	$\begin{gathered} \text { Range } \\ \% \\ \mathrm{H}_{2} \mathrm{SO}_{4} \end{gathered}$	$\begin{aligned} & \text { Range } \\ & -H_{0}(T) \end{aligned}$	$\begin{aligned} & \text { Range } \\ & - \text { log } \\ & k \text { (stoich) } \end{aligned}$	$\frac{\mathrm{d}[\log k(\text { stoich })]}{\mathrm{d}\left(-H_{0}\right)}$	$\begin{aligned} & -\log \\ & k(\text { stoich }) \\ & \text { at } H_{0}=0 \end{aligned}$	$\begin{gathered} \text {-log } \\ k \text { (stoich) } \\ \text { at } H_{0}=0, \\ T=100^{\circ} \mathrm{C} \end{gathered}$		$\underbrace{\mathrm{K}_{\boldsymbol{a}} \text { at }}_{100^{\circ}}$	m	$\begin{aligned} & -\log k_{0} \\ & \text { calc. } \end{aligned}$	$-\log k_{0}$ average
(iv) Substituted quinolines and isoquinolines															
Unsubstituted	p	180	5,6	$+$	80-94	5.0-6.4	6.0-4.5	$1 \cdot 16$	11.86	$14 \cdot 96$				$14.96{ }^{j}$	
Unsubstituted	p	245	5	$+$	6-48	$-0 \cdot 3-2 \cdot 3$	$6 \cdot 9-5 \cdot 8$	$0 \cdot 45$	$6 \cdot 76$	11.68				$11 \cdot 68$	11.7
Unsubstituted	p	245	6	$+$	6-48	$-0.3-2 \cdot 3$	$7 \cdot 2-5 \cdot 9$	$0 \cdot 52$	$7 \cdot 17$	12.09				12.09	$12 \cdot 1$
Unsubstituted	p	245	7	$+$	37-66	1.0-3.3	7-4-6.1	$0 \cdot 83$	$8 \cdot 80$	13.72				13.72	$13 \cdot 7$
Unsubstituted	p	180	8	$+$	61-90	3.4-5.9	$6 \cdot 0-3 \cdot 9$	0.83	$8 \cdot 76$	11.86				11.86	11.5
Unsubstituted	p	245	8	+	6-48	$-0 \cdot 3-2 \cdot 3$	6.5-4.5	$0 \cdot 78$	$6 \cdot 27$	11.19				$11.19\}$	$11 \cdot 5$
Unsubstituted	p	245	3	$+$	48-66	$2 \cdot 3-3 \cdot 3$	6.6-5.9	$0 \cdot 68$	$8 \cdot 14$	$13 \cdot 06$				13.06	$13 \cdot 1$
$4-\mathrm{OMe}$	b	90	3	$+$	73-99	5.4-9.0	6.3-3.6	0.72	$9 \cdot 99$	$9 \cdot 52$				9.52	$9 \cdot 5$
$6-\mathrm{OH}$	d	50	5	$+$	26-56	1.5-3.9	6.4-4.5	0.81	$7 \cdot 69$	$4 \cdot 97$				$4 \cdot 97$	$5 \cdot 0$
6-OH	d	50	5	0		$-2.7 \rightarrow-0.6$	6.2-6.3	-0.06	$6 \cdot 31$	$3 \cdot 59$	$5 \cdot 57 \mathrm{~h}$	$4 \cdot 19$	1	-0.60	-0.6
$6-\mathrm{OH}$	d	50	5	-		$-12.7 \rightarrow-10.8$	5.9-3.4	$1 \cdot 34$	-11.14	-13.86				-13.86	$-13 \cdot 9$
6-OMe	d	50	5	$+$	32-68	1.7-3.9	$6 \cdot 9-4.5$	$1 \cdot 14$	8.80	6.08				$6 \cdot 08$ \}	$6 \cdot 4$
$6-\mathrm{OMe}$	d	180	5	$+$	2-10	$-0.8 \rightarrow-0.3$	$4 \cdot 3-3 \cdot 9$	$0 \cdot 76$	$3 \cdot 69$	6.79				6.79 \}	$6 \cdot 4$
6 -OMe	d	180	5	0		$-4.5 \rightarrow-1.4$	$4 \cdot 5-4 \cdot 5$	$0 \cdot 00$	$4 \cdot 50$	$7 \cdot 60$	$5 \cdot 46$ h	$4 \cdot 11$	1	$3 \cdot 50$	$3 \cdot 5$
6-OH, 1-Me	d	50	5	+	22-42	1.1-2.5	6.8-5.9	$0 \cdot 65$	$7 \cdot 48$	$4 \cdot 76$				$4 \cdot 76$	$4 \cdot 8$
$6-\mathrm{OH}, 1-\mathrm{Me}$	d	50	5	0		-9.2-1.1	4.8-6.8	$-0.06 \mathrm{~m}$	6.72 m	$4 \cdot 00$	$7 \cdot 55$ h	$5 \cdot 67$	1	-1.67	$-1 \cdot 7$
$6-\mathrm{NH}_{3}$	d	35	5	+ (min.)	<22	-1.7-1.1	4.4-4.7	-0.13	$4 \cdot 58$	$0 \cdot 87$	$1 \cdot 689$	1.10	1	$-0.23)$	
$6-\mathrm{NH}_{2}$	d	35	5	+(maj.)		$-3 \cdot 2 \rightarrow-1.7$	5.2-4.4	$0 \cdot 53$	$3 \cdot 49$	-0.22				$-0 \cdot 22\}$	$-0 \cdot 2$
$6-\mathrm{NH}_{2}$	d	50	5	+		$-4.0 \rightarrow-1.9$	$5 \cdot 0-3 \cdot 8$	$0 \cdot 56$	$2 \cdot 69$	-0.03				-0.03	
$6-\mathrm{NH}_{2}$	d	50	5	0		$-7.0 \rightarrow-4.5$	$4 \cdot 6$ - $5 \cdot 1$	-0.33	6.59	$3 \cdot 87$	6.034	$5 \cdot 16$	1	-1.29	$-1 \cdot 3$
$7-\mathrm{NH}_{2}$	d	35	8	+ (min.)	6-22	$0 \cdot 0-1.2$	3.5-3. 5	$0 \cdot 00$	$3 \cdot 48$	-0.23	$0 \cdot 159$	-0.18	1	-0.41	
$7-\mathrm{NH}_{2}$	d	35	8	+ (maj.)	1-6	$-1.2-0.0$	$4 \cdot 4-3 \cdot 5$	0.74	$3 \cdot 45$	-0.26				-0.26 \}	-0.4
$7-\mathrm{NH}_{2}$	d	50	8	$+$		$-3.4 \rightarrow-1.9$	$5 \cdot 0-3.7$	0.88	$2 \cdot 13$	-0.59				-0.59	
${ }_{7}-\mathrm{NH}_{2}$	d	50	${ }^{8}$	0		$-7.5 \rightarrow-4.5$	$5 \cdot 5-5 \cdot 5$	0.00	$5 \cdot 47$	$2 \cdot 75$	$7 \cdot 05 h$	6.01	1	-3.26	$-3 \cdot 3$
1-Oxide	p	180	5,6	$+$	77-86	4.7-5.5	$5 \cdot 7-5 \cdot 2$	0.58	8.43	11.53				11.53	$11 \cdot 5$
1-Oxide	p	180	8	$+$	64-86	$3 \cdot 5-5 \cdot 5$	$5 \cdot 2-4.0$	$0 \cdot 56$	$7 \cdot 17$	$10 \cdot 27$				$10 \cdot 27$	$10 \cdot 3$
2-Quinolone	r	110	3	$+$	$71-86$	$4 \cdot 9-6.6$	$5 \cdot 8-5 \cdot 0$	$0 \cdot 51$	$8 \cdot 44$	8.90				8.90	$8 \cdot 9$
2-Quinolone	r	110	5	$+$	$71-86$	4.9-6.6	$6 \cdot 1-4.9$	$0 \cdot 76$	$9 \cdot 95$	$10 \cdot 41$				$10 \cdot 41$	$10 \cdot 4$
2-Quinolone	r	110	6	$+$	$71-86$	$4 \cdot 9-6 \cdot 6$	$5 \cdot 3-4 \cdot 0$	$0 \cdot 75$	$9 \cdot 03$	$9 \cdot 49$				$9 \cdot 49$	$9 \cdot 5$
2-Quinolone	r	110	8	$+$	71-86	4.9-6.6	4.4-3.4	$0 \cdot 60$	$7 \cdot 40$	$7 \cdot 86$				7.86	$7 \cdot 9$
4-Quinolone	b	90	3	$+$	77-99	5.9-9.0	4.8-3.2	0.54	$8 \cdot 08$	$7 \cdot 61$				7.61	$7 \cdot 6$
4-Quinolone	b	90	3	0	5-64	$-0.2-4.4$	$4 \cdot 6-5 \cdot 1$	-0.13	$4 \cdot 57$	$4 \cdot 10$	$2 \cdot 67$ h	$2 \cdot 01$	1	$2 \cdot 09\}$	$2 \cdot 4$
4-Quinolone	i	124	3	0	16-67	$0 \cdot 6-4 \cdot 3$	3.6-6.7	0.00	3.70	$4 \cdot 76$	$2 \cdot 67$ h	$2 \cdot 01$	1	$2.75\}$	$2 \cdot 4$
Isoquinoline	p	180	5	$+$	70-87	$4 \cdot 1-5 \cdot 7$	$4 \cdot 9-3 \cdot 4$	0.93	$8 \cdot 69$	11.79				$11.79\}$	$11 \cdot 7$
Isoquinoline	p	245	5	$+$	11-37	$0 \cdot 2-1 \cdot 7$	6.4-5.0	1.00	$6 \cdot 63$	11.55				11.55	$11 \cdot 7$
Isoquinoline	p	180	8	$+$	70-94	$4 \cdot 1-6 \cdot 3$	$6 \cdot 1-4 \cdot 1$	0.90	9.92	$13 \cdot 02$				13.02	$13 \cdot 0$
Isoquinoline 2-oxide	p	180	5	$+$	63-88	3.5-5.7	$5 \cdot 0-3 \cdot 5$	$0 \cdot 64$	$7 \cdot 15$	$10 \cdot 2 \overline{5}$				$10 \cdot 25$	$10 \cdot 3$
$\underset{2 \text {-oxide }}{\text { Isoquinoline }}$	p	180	8	$+$	77-88	$4 \cdot 7-5 \cdot 7$	6.0-5.2	$0 \cdot 69$	$9 \cdot 22$	$12 \cdot 32$				$12 \cdot 32$	12.3
(v) Substituted azines															
4-NH2-pyridazine	s	186	5	+	8-53	$0 \cdot 1-2 \cdot 8$	6.0-4.0	$0 \cdot 76$	$6 \cdot 14$	$9 \cdot 43$				$9 \cdot 43$	$9 \cdot 4$
Pyridazin-4-one	s	186	5	0 (min.)	12-80	$0 \cdot 3-4.9$	$3 \cdot 8-4.8$	-0.21	$3 \cdot 69$	$6 \cdot 98$	$1 \cdot 47 \mathrm{~h}$	$1 \cdot 11$	1	$5 \cdot 87$)	$5 \cdot 9$
Pyridazin-4-one	s	186	5	0 (maj.)		$-2.4 \rightarrow-1.3$	5.4-4.2	$1 \cdot 12$	$2 \cdot 65$	5.94				$5 \cdot 94$ \}	5
2 - NH_{3}-pyrimidine	t	107	5	0 (min.)		$-3.0 \rightarrow-1.2$	$5 \cdot 7-5 \cdot 7$	$0 \cdot 00$	$5 \cdot 70$	6.03	$3 \cdot 85 h$	$3 \cdot 32$	1	$2 \cdot 71$	$2 \cdot 7$
$2-\mathrm{NH}_{2}$-pyrimidine	t	107	5	0 (maj.)		$-4.8 \rightarrow-4.0$	6.6-6.0	0.89	$2 \cdot 40$	2.73 4.54				2.73 4 ,	4.7
$\begin{aligned} & 6-\mathrm{NH}_{3}-2,4-\mathrm{Me}_{2}- \\ & \text { pyrimidine } \end{aligned}$	t	107	5	+		$-1.9 \rightarrow-0.3$	$5 \cdot 7-4 \cdot 4$	$0 \cdot 76$	$4 \cdot 21$	$4 \cdot 54$				$4 \cdot 54$	$4 \cdot 5$
$6-\mathrm{NH}_{2}-2,4-\mathrm{Me}_{3}-$ pyrimidine		107	5	0		$-7.4 \rightarrow-3.7$	6.5-6.4	$0 \cdot 00$	$6 \cdot 47$	6.80	$7 \cdot 30 \mathrm{~h}$	$6 \cdot 09$	1	0.71	$0 \cdot 7$
(vi) Pyrones and thiopyrones															
2,6-Me ${ }_{2}$-4-pyrone	c	148		0	25-98	1.1-7.4	$4 \cdot 2-5 \cdot 5$	-0.21 m	3.99 m	$6 \cdot 00$	$0 \cdot 17$ h	$0 \cdot 14$	1	5.86	$5 \cdot 9$
$\begin{aligned} & \text { 2,6-Me }{ }_{2} \text {-1-thio- } \\ & \text { 4-pyrone } \end{aligned}$	c	148	3,5	0	22-99	1.0-8.1	5.5-5.9	-0.10	$5 \cdot 38$	$7 \cdot 39$	$0 \cdot 96$ h	0.73	1	$6 \cdot 66$	$6 \cdot 7$
Chromone	d	180	3	0	40-84	1.9-5.4	$2 \cdot 6-2 \cdot 9$	0.00	$2 \cdot 83$	$5 \cdot 93$	-1.60	-1.21	$0 \cdot 65$	6.71	6.7
Chromone	d	180	6	0	40-84	1.9-5.4	$4 \cdot 3-3 \cdot 9$	0.00	$4 \cdot 06$	$7 \cdot 16$	$-1 \cdot 60$	-1.21	$0 \cdot 65$	$7 \cdot 94$	$7 \cdot 9$
Chromone	d	180	8	0	53-84	2.8-5.4	$4 \cdot 8-4 \cdot 4$	$0 \cdot 00$	$4 \cdot 62$	$7 \cdot 72$	-1.60	-1.21	$0 \cdot 65$	$8 \cdot 50$	$8 \cdot 5$
1-Thiochromone	d	180	3	0	39-84	1.8-5.4	$3 \cdot 2-3 \cdot 4$	$0 \cdot 00$	$3 \cdot 31$	$6 \cdot 41$	-0.72	-0.54	$0 \cdot 65$	6.95	7.0
1-Thiochromone	d	180	6,8	0	39-84	1.8-5.4	$5 \cdot 5-5 \cdot 1$	$0 \cdot 00$	$5 \cdot 25$	$8 \cdot 35$	-0.72	-0.54	$0 \cdot 65$	$8 \cdot 89$	$8 \cdot 9$

${ }_{a}$ G. P. Bean and A. R. Katritzky, J. Chem. Soc. (B), 1968, 864. ${ }^{6}$ P. Bellingham, C. D. Johnson, and A. R. Katritzky, J. Chem. Soc. (B), 1967, 1226. © Ref. 2. d U. Bressel, A. R. Katritzky, and J. R. Lea, J.Chem. Soc. (B), 1971, 11. © A. El-Anani, P. E. Jones, and A. R. Katritzky, J. Chem. Soc. (B), 1971, 2363. f G. P. Bean, C. D. Johnson, A. R. Katritzky, B. J. Ridgewell, and A. M. White, J. Chem. Soc. (B), 1967, 1219. g A. El-Anani, S. Clementi, A. R. Katritzky, and L. Yakhontov, follow3753. 2 Detritiation. m Interpolated values: the experimental region includes $H_{0}=0$. n The sum of both first and second $\mathrm{p} K$ a must be used, since the reaction occurs on the minority species of a minority species (i.e. the anion in presence of the conjugate acid). o G. P. Bean, P. J. Brignell, C. D. Johnson, A. R. Katritzky, B. J. Ridgewell,
 Katritzky, and A. Marzec, Bull. Acad. polon. Sci., Ser. Sci. chim., 1967, 16, 453. A A. R. Katritzky and I. Pojarlieff, J. Chem. Soc. (B), 1968, 873. t A. R. Katritzky, M. Kingsland, and O. S. Tee. J. Chem. Soc. (B), 1968, 1484.
consider isotope effects on the rate of the generalised reactions (11) and (12). Since the energy profile for hydrogen exchange is approximately symmetrical, the observed rate constants for the forward and back reactions will be equal, to a first approximation. This problem has been recently discussed by Liler, ${ }^{14}$ assuming the validity of the Swain equation (13), ${ }^{15}$ which has also been supported by experimental evidence. ${ }^{16,17}$

$$
\begin{gather*}
\mathrm{ArD}+\mathrm{H}^{+} \underset{k_{k_{-1}}}{\stackrel{k_{1}}{2}} \mathrm{ArDH}^{+} \xrightarrow{k_{2}} \mathrm{ArH}+\mathrm{D}^{+} \tag{11}\\
\mathrm{ArT}+\mathrm{H}^{+} \xlongequal[k_{k_{-1}}^{k_{1}}]{{ }_{2}} \mathrm{ArTH}^{+} \xrightarrow{k_{3}} \mathrm{ArH}+\mathrm{T}^{+} \tag{12}\\
\left(k_{-1} / k_{2}\right)_{\mathrm{T}}=\left(k_{-1} / k_{2}\right)_{\mathrm{D}^{1.442}} \tag{13}
\end{gather*}
$$

${ }^{14} \mathrm{M}$. Liler, 'Reaction Mechanisms in Sulphuric Acid and other Strong Acid Solutions,' Academic Press, London, 1971, p. 263.

Gold ${ }^{18}$ measured the rates of loss of tritium and deuterium from 1,3,5-trimethoxybenzene in aqueous perchloric acid solution and acetate buffers and found that the ratio $\left(k_{\mathrm{T}}\right)_{\text {obs }} /\left(k_{\mathrm{D}}\right)_{\text {obs }}$ did not vary greatly with acidity. Values ranging from 0.45 to 0.55 were reported.

Olsson ${ }^{19}$ measured the ratio $\left(k_{\mathrm{T}}\right)_{\text {obs }} /\left(k_{\mathrm{D}}\right)_{\text {obs }}$ for several substituted benzenes in aqueous sulphuric acid solutions and concluded that it did not change very much with acidity or temperature but was fairly sensitive to substrate reactivity, increased reactivity of the aromatic substrate
${ }^{15}$ C. G. Swain, E. C. Stivers, J. F. Reuwer, jun., and L. J. Schaad, J. Amer. Chem. Soc., 1958, 80, 5885.
${ }^{16}$ S. Olsson, Arkiv Kemi, 1961, 16, 489
${ }^{17}$ E. S. Lewis and J. K. Robinson, J. Amer. Chem. Soc., 1968, 90, 4337.
${ }^{18}$ B. D. Batts and V. Gold, J. Chem. Soc., 1964, 4284.
${ }^{19}$ S. Olsson, Arkiv Kemi, 1970, 32, 105, and previous papers in the series.
leading to a stronger isotope effect. Values ranging from 0.45 to 0.64 were reported. For present purposes, a value of $\left(k_{\mathrm{T}}\right)_{\text {obs }} /\left(k_{\mathrm{D}}\right)_{\text {obs }}$ of 0.55 has been used.

RESULTS

A typical example of the application of the procedure just mentioned is given in Table 2 for 2 -amino- 5 -chloropyridine; two calculations are made, for reaction as the free base species, and for reaction as the cation.

Available data from previous work is summarised in Table 3; and the procedure already outlined has been applied to this data to yield the results given in the same table.

The $\mathrm{p} K_{\mathrm{a}}$ values reported in the Table are corrected for deuteriated media. Where values were available at 20° the proper equations $\left(6^{\prime}\right),\left(8^{\prime}\right)$, and $\left(10^{\prime}\right)$, easily derived

$$
\begin{align*}
& \mathrm{p} K_{\mathrm{a}}\left(100^{\circ}\right)=0.82 \mathrm{p} K_{\mathrm{a}}\left(20^{\circ}\right)-0.35 \\
& \mathrm{p} K_{\mathrm{a}}\left(100^{\circ}\right)=0.82 \mathrm{p} K_{\mathrm{a}}\left(20^{\circ}\right)+0.10 \\
& \mathrm{p} K_{\mathrm{a}}\left(100^{\circ}\right)=0.75 \mathrm{p} K_{\mathrm{a}}\left(20^{\circ}\right)+0.01
\end{align*}
$$

from equations (4), (5), (7), and (9) have been used. Because of the kinetic procedure involved, ${ }^{2}$ where more than one proton exchanges at the same rate, the obtained reactivity refers to one position only.

It is planned in a later paper of this series to attempt to correlate the k_{0} values of Table 3 by the Hammett equation and by the application of MO methods.

Figure 2 Rate profiles for 2,4,6-trimethylpyridine at A, 180° and $B, 209^{\circ}$; for 4-aminopyridine at $\mathrm{C}, 146^{\circ}$ and $\mathrm{D}, 170^{\circ}$: and for 4-amino-2,6-dichloropyridine at $E, 122^{\circ}$

APPENDIX

Table 4 records the hydrogen exchange data needed to construct the rate profiles in Figures 2 and 3 from which

Table 4
Pseudo-first-order rate constants (s^{-1}) for hydrogendeuterium exchange
(i) 2,4,6-Trimethylpyridine at 180 and 209°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(180)$	$-\log k$	$-H_{0}(209)$	$-\log k$
91	$6 \cdot 00$	$4 \cdot 71$	$5 \cdot 63$	3.76
87	$5 \cdot 64$	$4 \cdot 92$	$5 \cdot 30$	3.97
82	$5 \cdot 20$	$5 \cdot 29$	$4 \cdot 88$	$4 \cdot 42$
77	$4 \cdot 71$	$5 \cdot 60$	$4 \cdot 42$	4.77
71	$4 \cdot 17$	$5 \cdot 90$	3.92	4.96
66	-	-	3.48	5.05

(ii) 4-Aminopyridine at 146 and 170°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(146)$	$-\log k$	$-H_{0}(170)$	$-\log k$
51	$2 \cdot 95$	$4 \cdot 28$	$2 \cdot 86$	$3 \cdot 37$
46	$2 \cdot 58$	$4 \cdot 40$	2.49	3.57
38	$2 \cdot 02$	$4 \cdot 67$	1.95	3.83
26	$1 \cdot 22$	$5 \cdot 24$	$1 \cdot 17$	$4 \cdot 25$
4	0.10	$5 \cdot 76$	0.09	4.86

Table 4 (Continued)
(iii) 2-Amino-5-chloropyridine at 179°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(179)$	$-\log k$
90	6.18	3.31
88	6.00	3.46
83	5.59	3.60
79	5.12	3.75
75	4.77	4.01
71	4.38	4.10
28	1.27	5.09
19	0.71	5.08
14	0.48	5.09

(iv) 4-Amino-2,6-dichloropyridine at 122°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(122)$	$-\log k$
69	$4 \cdot 55$	3.43
67	$4 \cdot 33$	3.67
65	$4 \cdot 12$	3.88
57	3.45	3.85
40	$2 \cdot 20$	3.82
28	1.36	3.56
2	-0.71	3.37

(v) 2,4,6-Trimethylpyridine 1-oxide at 185 and 216°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(185)$	$-\log k$	$-H_{0}(216)$	$-\log k$
97	6.70	$5 \cdot 08$	6.32	$4 \cdot 10$
95	6.42	$5 \cdot 21$		
91	5.93	$5 \cdot 42$	$5 \cdot 54$	4.50
85	$5 \cdot 41$	$5 \cdot 68$	$5 \cdot 06$	$\mathbf{4 . 6 9}$
78			$4 \cdot 45$	$5 \cdot 22$
76			$4 \cdot 26$	$5 \cdot 30$
71			3.85	$5 \cdot 44$

(vi) 2-Amino-5-bromopyridine 1-oxide at 182°

$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(182)$	$-\log k$
80	$5 \cdot 22$	$4 \cdot 23$
66	3.84	$4 \cdot 72$
56	$3 \cdot 13$	$4 \cdot 92$
48	$2 \cdot 59$	$5 \cdot 43$
28	$1 \cdot 26$	$5 \cdot 72$
16	0.58	$5 \cdot 70$
(vii) 4-Quinolone at 124°		$-\log k$
$\% \mathrm{D}_{2} \mathrm{SO}_{4}$	$-H_{0}(124)$	$3 \cdot 70$
67	$4 \cdot 31$	3.70
60	3.67	3.70
54	3.20	3.70
44	2.48	3.60
19	0.83	3.63

some activation parameter data of Table 1 were calculated. All the compounds of Table 4 have been studied previously, and the new results did not disclose any surprising features.

Figure 3 Rate profiles for 2,4,6-trimethylpyridine 1-oxide at A,
185°; and $\mathrm{B}, 216^{\circ}$; for 2 -amino- 5 -bromopyridine 1 -oxide at C, 182°; for 2 -amino-5-chloropyridine at $\mathrm{D}, 179^{\circ}$; and for 4-quinolone at $\mathrm{E}, 124^{\circ}$
We thank CNR (Italy) for a post-doctoral fellowship to S. C. and the Accademia Nazionale dei Lincei for a postdoctoral fellowship to G. B.
[2/2427 Received, 25th October, 1972]

[^0]: ${ }^{1}$ Part XXX, A. G. Burton, P. J. Halls, and A. R. Katritzky,

[^1]: ${ }^{5}$ P. Bellingham, Ph.D. Thesis, University of East Anglia, 1967.
 ${ }^{6}$ L. P. Hammett, ' Physical Organic Chemistry: Reaction Rates, Equilibria and Mechanisms,' McGraw-Hill, New York, 1970, 2nd edn., p. 105.
 ${ }^{2}$ F. W. Cagle, jun. and H. Eyring, J. Amer. Chem. Soc., 1951, 73, 5628.

